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Abstract — PRIDE (PRediction In Dynamic Environments) is a
framework that provides an autonomous vehicle’s planning system
with information that it needs to perform path planning in the
presence of moving objects. The underlying concept is based upon
a multi-resolutional, hierarchical approach that incorporates multiple
prediction algorithms into a single, unifying framework. This frame-
work supports the prediction of the future location of moving objects
at various levels of resolution, thus providing prediction information
at the frequency and level of abstraction necessary for planners at
different levels within the hierarchy.
This paper presents the chronology of the development of the PRIDE
framework. We describe the different prediction algorithms developed
for moving object predictions. We provide details on different work
performed specifically for each prediction algorithm and how these
algorithms are used together to give better predictions. The chronol-
ogy also relates the successive simulation packages and testbeds1

used in each step of the development of the PRIDE framework.

Keywords: 4D/RCS, aggressivity, autonomous vehicles, crit-
ical time points, long-term prediction, moving object predic-
tion, PRIDE, short-term prediction, integration methodology.

I. INTRODUCTION

The field of autonomous ground vehicles has made promi-
nent strides during the last decade. Advancements have been
made in methods for autonomous navigation of autonomous
vehicles in dynamic environments. Funding for research in
this area has continued to grow over the past few years, and
recent high profile funding opportunities have started to push
theoretical research efforts into practical use. Autonomous
systems in this context refer to embodied intelligent systems
that can operate fairly independently from human supervision.
Many believe that the DEMO III Experimental Unmanned
Vehicle (XUV) effort represents the state of the art in au-
tonomous off-road driving [17]. This effort seeks to develop
and demonstrate new and evolving autonomous vehicle tech-
nology, emphasizing perception, navigation, intelligent system
architecture, and planning. It should be noted that the DEMO
III XUV has only been tested in highly static environments.
It has not been tested in on-road driving situations, which
include pedestrians and oncoming traffic. There have also been
experiments performed with autonomous vehicles during on-
road navigation. Perhaps the most successful has been that of

1Commercial equipment and materials are identified in this paper in order
to adequately specify certain procedures. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

Dickmanns [2] as part of the European Prometheus project in
which the autonomous vehicle performed a trip from Munich
to Odense (> 1600 kilometers) at a maximum velocity of
180 km/h. Although the vehicle was able to identify and
track other moving vehicles in the environment, it could only
make basic predictions of where those vehicles were expected
to be at points in the near future, considering the vehicle’s
current velocity and acceleration. The agent architecture AU-
TODRIVE [19] simulates the generation and execution of a
driver’s plan to reach a destination safely while taking account
of other road users and obeying traffic signs and signals. The
selection of appropriate goals is made through a process of
“dynamic goal creation” that causes the continual run-time
creation and modification of sub-goals.

Most of the work in the literature dealing with drivers’
actions and predicted behavior has been performed by psy-
chologists in an attempt to explain drivers’ behaviors and to
identify the reason for certain dysfunctions [1], [3], [7]. Our
research interest bears upon a level of situation awareness
of how other vehicles in the environment are expected to
behave considering the situation in which they find themselves.
When humans drive, they often have expectations of how
each object in the environment is expected to move according
to the situation they find themselves in. When a vehicle is
approaching an object that is stopped in the road, we expect
it to slow down behind the object or try to pass it. When
we see a vehicle with its blinker on, we expect it to turn or
change lanes. When we see a vehicle traveling behind another
vehicle at a constant speed, we expect it to continue traveling
at that speed. The decisions that we make in our vehicle are
largely based on these assumptions about the behavior of other
vehicles.

To address this need, we have developed a multi-
resolutional, hierarchical framework, called PRIDE (PRedic-
tion in Dynamic Environments) that provides an autonomous
vehicle’s planning system with information that it needs to
perform path planning in the presence of moving objects [12],
[15]. This framework supports the prediction of the future
location of moving objects at various levels of resolution, thus
providing prediction information at the frequency and level of
abstraction necessary for planners at different levels within the
hierarchy.

This paper presents the chronology of the development
of the PRIDE framework, starting back in 2003 when the
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initial concept called Moving Object Representation, Predic-
tion, and Planning System (MORPPS) was first introduced
using a Kalman filter-based prediction approach. In 2004,
we started using the AutoSim simulation package to provide
higher resolution simulations of moving objects and on-road
driving. We also introduced a second set of prediction algo-
rithms that predicted at longer timeframes (seconds into the
future as opposed to tenths of seconds). The term PRIDE
appeared in 2005 and looked at using the outputs of the
two prediction approaches to strengthen/weaken the results
of the other. PRIDE was also applied to simulate realistic
traffic patterns during on-road driving by using the longer-
term prediction algorithms to control individual vehicles on a
crowded roadway. More recently, in 2006 and 2007, work has
been performed to determine the future time horizons when the
different prediction algorithms give the best results. We also
started incorporating driver aggressivity into the longer-term
algorithms, and determined how the perceived aggressivity
of a driver in the environment affected the future position
of the vehicle they were driving. During this same time,
we ported the PRIDE algorithms over to the Mobility Open
Architecture Simulation and Tools (MOAST) and the Urban
Search and Rescue Simulation (USARSim) framework [16],
which provided a higher-fidelity simulation platform with a
physic-based engine.

This paper is organized as follows: Section II presents
the initial concept called Moving Object Representation, Pre-
diction, and Planning System (MORPPS), which explored
logic-based motion prediction while using different prediction
algorithms for different environments. Section III provides an
overview of the PRIDE framework. Section IV gives details on
the short-term prediction approach along with the description
of LAser Detection And Ranging (LADAR) noise models.
Section V describes the second prediction approach, the long-
term, cost-based, probabilistic moving object prediction algo-
rithms. Section VI provides information on different works
performed on the integration of the long-term and short-
term predicted estimates. Section VII discusses the role of
aggressivity in PRIDE and describes how it is addressed
using MOAST and the USARSim simulation environment.
Section VIII concludes the paper and gives an overview on
future work.

II. THE DAYS OF MORPPS

The initial moving object framework called MORPPS
(Moving Object Representation, Prediction, and Planning Sys-
tem) [14] was developed in 2003. This framework provides
a mechanism to apply appropriate prediction algorithms and
representational approaches in order to fully capture the infor-
mation needed to navigate in the presence of moving objects.

A. Logic-Based Motion Predictions in Constrained Environ-
ments

The framework explores logic-based prediction algorithms
for use in constrained environments. The purpose of these
algorithms is to predict the probability that an object will

occupy a given location in space at a given time by taking
into account: a) the constraints that are placed on the object’s
motion and b) the influencing factors that would cause it to
take a given action over another at specific times.

In the case of on-road driving, vehicles must stay on the road
and as such, the road network provides the constraints dictating
the bounds in which a vehicle may travel. A database struc-
ture [4] has been developed to capture detailed information
about the road network, which includes information about the
curvature of lanes, road interconnectivity, signage and traffic
control, lane marking, etc.

The rule-based prediction approach requires that one dis-
cretizes the possible actions that a moving object may take. In
the case of a vehicle driving on-road, we limit the actions of
the vehicle to be: remain at a constant velocity in the current
lane, slowly accelerate in the current lane, rapidly accelerate in
the current lane, slowly decelerate in the current lane, rapidly
decelerate in the current lane, change to a lane on the left,
change to a lane on the right, turn to a lane on the left (at an
intersection), turn to a lane on the right (at an intersection),
make a U-Turn (at an intersection).

B. Constraints on Motion and Influencing Factors

Different factors can affect the probabilities associated with
the possible actions that a vehicle may take while driving on-
road. There are two classes of factors that we must consider.
The first are factors that limit the possibilities of where the
vehicle is able to reach. In other words, by considering these
factors, we can eliminate certain portions on the maps that
are not reachable by the vehicle. We call these constraints
on motion. An example of a constraint on motion is a priori
road network information, where the road network limits the
possible locations that the vehicle can possibly attain.
The second are factors that influence which of the possible
actions the vehicle is likely to perform out of those that are
available to it. We call these influencing factors. An example of
an influencing factor can be the weather and the environmental
conditions. Weather and environmental conditions affect the
visibility and slickness of the road surfaces. As the weather
and environmental conditions worsen, the probability often
increases that the vehicle’s velocity will decrease.

III. THE PRIDE FRAMEWORK

Many efforts on the framework led to the second generation
of MORPPS called PRIDE (PRediction In Dynamic Environ-
ments) that was conceived in 2004. From this time, we con-
sider PRIDE as a multi-resolutional, hierarchical framework
that provides an autonomous vehicle’s planning system with
information required to perform path planning in the presence
of moving objects. This framework supports the prediction
of the future location of moving objects at various levels
of resolution, thus providing prediction information at the
frequency and level of abstraction necessary for planners at
different levels within the hierarchy. To understand the way
that PRIDE was developed and the functionality that it is
intended to provide, it is important to understand the 4D/RCS
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architecture [5] on which it was based. 4D refers to the four
dimensions (three dimensions of space and one dimension
of time), and RCS stands for Real-time Control Systems.
The 4D/RCS architecture provides a reference model for
unmanned vehicles on how their software components should
be identified and organized. It defines ways of interacting to
ensure that high-level objectives can be met. To achieve this,
the 4D/RCS reference model provides well defined and highly
coordinated sensory processing, world modeling, knowledge
management, cost/benefit analysis, behavior generation, and
messaging functions, as well as the associated interfaces.

The 4D/RCS conceptual framework spans the entire range
of operations that affect intelligent vehicles, from those that
take place over time periods of milliseconds and distances
of millimeters to those that take place over time periods of
months and distances of thousands of kilometers. The 4D/RCS
model is intended to allow for the representation of activities
that range from detailed dynamic analysis of a single actuator
in a single vehicle subsystem to the combined activity of
planning and control for hundreds of vehicles and human
beings in full dimensional operations covering an entire theater
of battle. In order to span the wide range of activities included
within the conceptual framework, 4D/RCS adopts a multilevel
hierarchical architecture with different range and resolution
in time and space at each level, as shown for a military
environment in Figure 1 [5] and described below.

Fig. 1. A high level block diagram of a typical 4D/RCS reference model
architecture.

At the Servo level, commands to actuator groups are decom-
posed into control signals to individual actuators. Outputs to
actuators are generated every 5 milliseconds (ms). Plans that
look ahead 50 ms are regenerated for each actuator every 5 ms.
Plans of individual actuators are synchronized so that coordi-
nated motion can be achieved for multiple actuators within an
actuator group. At the Primitive level, multiple actuator groups
are coordinated and dynamical interactions between actuator
groups are taken into account. Plans look ahead 500 ms and are
recomputed every 50 ms. At the Autonomous Mobility level,
all the components within an entire subsystem are coordinated,
and planning takes into consideration issues such as obstacle
avoidance and gaze control. Plans look ahead 5 seconds (s)
and replanning occurs every 500 ms. At the Vehicle level,
all the subsystems within an entire vehicle are coordinated to

generate tactical behaviors. Plans look ahead 1 minute (min)
and replanning occurs every 5 s. At the Section level, multiple
vehicles are coordinated to generate joint tactical behaviors.
Plans look ahead 10 min and replanning occurs about every
minute. At the Platoon level, multiple sections containing a
total of 10 or more vehicles of different types are coordinated
to generate platoon tactics. Plans look ahead an hour (h) and
replanning occurs every 5 min. At the Company level, multiple
platoons containing a total of 40 or more vehicles of different
types are coordinated to generate company tactics. Plans look
ahead 5 h and replanning occurs every 25 min. At the Battalion
level, multiple companies containing a total of 160 or more
vehicles of different types are coordinated to generate battalion
tactics. Plans look ahead 24 h and replanning occurs at least
every 2 h.

The PRIDE framework was developed to provide moving
object predictions to planners running at any level of the
4D/RCS hierarchy at an appropriate scale and resolution. The
underlying concept of the PRIDE framework is based on
a multi-resolutional, hierarchical approach that incorporates
multiple prediction algorithms into a single, unifying frame-
work. At the higher levels of the framework (Vehicle level
and above, as shown in Figure 1), moving object prediction
needs to occur at a much lower frequency and a greater level
of inaccuracy is tolerable. At these levels, moving objects are
identified as far as the sensors can detect, and a determination
is made as to which objects should be classified as “objects
of interest”. Once objects of interest are identified, we use
the long-term prediction approach presented in section V to
predict where those objects will be at various time steps
into the future. At the lower levels (Autonomous Mobility
level and below, as shown in Figure 1), we utilize estimation
theoretic short-term predictions using sensor data as described
in section IV to predict the future location of moving objects
with an associated confidence measure.

IV. IMPLEMENTING THE SHORT-TERM PREDICTION
ALGORITHM

Details on the development of a combined probabilistic
object classification and estimation theoretic framework to
predict the future location of moving objects, along with an as-
sociated uncertainty measure can be found in [11]. The frame-
work proposed adopts a more generalized view of moving
object representation and prediction in concurrently integrating
multiple knowledge representation approaches from disparate
sources to completely model the information necessary for
dynamic planning.

A. The OneSAF Testbed (OTBSAF)

In this approach, the prediction algorithms are tested using
the OneSAF (OTBSAF) testbed as the virtual sensor. OTBSAF
is a simulation package used for integrating, testing and
user feedback of technology developments into the OneSAF
Objective System. It provides operational environments useful
for identifying, developing, prototyping, demonstrating, and
testing of enabling technologies and entity behaviors. As a
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simulated environment, OTBSAF is able to represent moving
objects. By querying OTBSAF, we can retrieve an object’s
location and velocity at the current time. To validate the
testbed and prediction algorithms, we are initially using this
retrieved data to serve as our processed sensor data.

B. LADAR Noise Model

In this work, the LADAR sensor is the primary source
of sensor data. The data retrieved from OTBSAF is perfect
sensor data. In other words, when we ask for the location
or dimensions of the object, we are presented with the exact
location and the exact dimensions without any associated
uncertainty. Although convenient, this does not represent the
information that we expect to get from sensors on the actual
vehicle. To compensate for this, we have introduced a noise
model into the data retrieved from OTBSAF [11].

C. Prediction of Moving Objects

An Extended Kalman Filter (EKF) is employed to predict
(estimate) the position and velocity of the moving object at
a future time instant. Kalman’s prediction theory allows the
computation of the best estimate of a future system state by
using the most recent estimates of system state along with
the system dynamic model. With appropriate interpretation,
covariance analysis inherent in the Kalman filtering techniques
serves as a confidence measure indicative of the uncertainty in
the predicted system states. The EKF thus provides a conve-
nient measure of prediction accuracy through the covariance
matrix. The EKF employs a nonlinear model derived from
equations based on the kinematics of the moving objects
(vehicles) to be predicted.

The EKF is a well established recursive state estimation
technique where estimates the states of a nonlinear system are
obtained by linearization of the nonlinear state and observation
equations. Within the PRIDE framework, short-term prediction
of objects moving at variable speeds and at given look-ahead
time instants (every one-tenth of a second) are predicted using
the EKF. It should be noted here that, in contrast to the long-
term predictions, the estimation-theoretic short-term prediction
algorithm does not incorporate a priori knowledge such as
road networks and traffic signage and assumes uninfluenced
constant trajectory. More information on the short-term pre-
diction algorithm can be found in [10].

V. IMPLEMENTING THE LONG-TERM PREDICTION
ALGORITHM

The long-term (LT) situation-based probabilistic prediction
approach was implemented in AutoSim in 2004 [12]. Autosim
was developed by the Advanced Technology Research Corpo-
ration and was used to provide higher resolution visualizations
of moving objects and on-road driving. AutoSim is a high-
fidelity visualization tool which models details about road
networks, including individual lanes, lane markings, intersec-
tions, legal intersection traversibility, etc. Using this package,
we have simulated typical traffic situations (e.g., multiple cars
negotiating around obstacles in the roadway, bi-directional

opposing traffic, etc.) and have predicted the future location of
individual vehicles on the roadway based upon the prediction
of where other vehicles are expected to be.

The LT prediction approach is used to predict the future
location of moving objects for longer time horizons. Figure 2
graphically shows the overall process flow.

Fig. 2. The situation-based probabilistic (long-term) prediction process.

The output of this loop is a list of locations with associated
probabilities showing where a vehicle is expected to be at
specific times in the future. Using these probabilities, we can
create traffic patterns in one of two ways:
• Control the vehicle to move to the location with the

highest probability. For example, if the vehicle has a 40
% chance of being at location A, a 30 % chance of being
at location B, a 20 % chance of being at location C, and
a 10 % chance of being at location D, the vehicle will
always be commanded to move to location A.

• Control the vehicle to move to a location whose likeli-
hood is proportional to the probability that it is expected
to be there. One approach would be to use a random
number generator. In this way, a vehicle’s movement
would be closely tied to the probabilities coming out of
the moving object predictor, as opposed to always moving
to the location with the highest probability.

Independent of the approach used to control the vehicles, the
output of these algorithms result in realistic traffic patterns
involving one to many vehicles that can be used as a basis
to evaluate the performance of autonomous vehicle within
simulated on-road driving scenarios.

A. Possible Vehicle Actions

The process of predicting several time steps into the future
consists of a series of continuous actions which constitute a
driving procedure. Each action is accomplished in one time
step, thus, for a time of prediction n, n actions will be
completed. The long-term prediction algorithms use different
types of actions. The first type of actions consists of a set of
speed profiles: Quick Acceleration (QA), Slow Acceleration
(SA), Keep the same Speed (KS), Quick Deceleration (QD),
Slow Deceleration (SD). The second type of actions concerns
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the changing of lanes: a vehicle has the possibilities of staying
in its lane (SL), changing to the right lane (CR), changing
to the left lane (CL). The last type of action pertains to
intersections, a vehicle has the possibility to turn left, to turn
right or to go straight through an intersection.

At this step, for each vehicle on the road, the algorithm
computes all possible sequences of actions, regarding the
current velocity and location. Some actions may not be pos-
sible due to the vehicle’s current velocity (for example, a
vehicle moving slowly cannot change lanes in one second
during a deceleration). In this case, those actions are not
considered. Each sequence of actions is generated in a realistic
way using rules. Presently, a single rule is applied to all of
the possible action sequences to generate the most realistic
ones. To evaluate these rules, we associate a value to each
‘acceleration profile’: 2 for QA, 1 for SA, 0 for KS, -1 for
SD, and -2 for QD. The rule states that a vehicle can only
switch from an action to another action if their values differ
at most by one. An example of action sequences and their
associated validity is shown in Table I.

TABLE I
EXAMPLE OF VALID AND INVALID SEQUENCES OF ACTIONS.

Actions Validity Description

SD SD SD SD Valid

QD QD QA QA Invalid QD to QA illegal

B. Cost Model
The sequences of actions are deemed finite, and the prob-

abilistic LT prediction algorithms use an underlying cost
model that simulates the danger that a driver would incur by
performing an action or occupying a state [15]. These costs
are being used by multiple efforts within the program that
this effort is a part of. Thus, there is value of building the
probabilities directly from these costs to allow for synergy
with other efforts. These costs can be separated in two different
categories:

1) The cost representing the vehicle’s actions: This cost
represents the penalties for performing an action as a
function of the amount of attention needed. For exam-
ple, the changing lane action needs more concentration
than going straight in the same lane, thus the cost for
changing lane is greater.

2) The cost representing the vehicle’s state on the road:
The proximity to other static and dynamic objects on
the road is assigned to a cost of collision with these
objects. Examples of static objects on the road are road
blocks, debris, etc. Examples of dynamic objects on
the road are other vehicles. The costs associated with
static or moving objects is proportional to the danger
and imminence of collision. For example, a road block
at one kilometer ahead is less dangerous than another
vehicle passing at three meters ahead.

Examples of costs are shown in Table II.

TABLE II
EXAMPLE OF ACTIONS WITH THEIR CORRESPONDING COSTS.

Action Cost

Quick Acceleration (QA) 5
Quick Deceleration (QD) 5
Changing lane (CL, CR) 20

Opposite direction 500
Collision (CO) 1000

Being under the speed limit (US) 5
Being over the speed limit (OS) 5

C. Predicted Vehicle Trajectory

Costs of collision between vehicles are computed using
Predicted Vehicle Trajectories (PVTs) which represent the
possible movements of vehicle throughout the time period of
prediction being analyzed. A PVT is a vector whose origin
represents the current position of the vehicle (xIP , yIP , tIP =
0) at time = 0 and its extremity represents the predicted
position (xPP , yPP , tPP = tpred) where tpred is the pre-
determined time in the future for the prediction process.
Also contained within the PVT is the action-cost and action-
probability information.
A collision is detected when PVTs cross each other, the
location and time of the collision is determined using a
parametrization of each PVT. This information can be obtained
by using a parametrization of each PVT as represented in the
following equations.

{
x1(t1) = xPP1t1 + xIP1(1− t1)
y1(t1) = yPP1t1 + yIP1(1− t1); t1 ∈ [0, 1] (1)

{
x1(t2) = xPP2t2 + xIP2(1− t2)
y1(t2) = yPP2t2 + yIP2(1− t2); t2 ∈ [0, 1] (2)

where t1 and t2 are the parameters for each PVT. Equations
(1) and (2) create a linear system where t1 and t2 can be
solved using Cramer’s rule:

t1 =

xIP2 − xIP1 xIP2 − xPP2

yIP2 − yIP1 yIP2 − yPP2

xPP1 − xIP1 xIP2 − xPP2

yPP1 − yIP1 yIP2 − yPP2

t2 =

xPP1 − xIP1 xIP2 − xIP1

yPP1 − yIP1 yIP2 − yIP1

xPP1 − xIP1 xIP2 − xPP2

yPP1 − yIP1 yIP2 − yPP2

The two vehicles will cross each other at two different
times, (t1, tpred) for the first vehicle, (t2, tpred) for the sec-
ond vehicle. For a small difference between the two times,
the collision is probable or certain. Conversely, for a large
difference, the collision is improbable. Thus if the PVTs cross
and the difference of time is less than a predetermined time
(τ ), we use Equation (3) to determine the collision cost:
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Collision Cost = CO (τ − (tpred|t1 − t2|)) (3)

where CO is the predetermined maximum cost than can
occur when colliding with a specific object (Table II) and τ is
the predetermined time difference in which a cost for collision
will be incurred.

D. From Cost to Probability

As discussed previously, the PRIDE algorithms compute n
realistic sequences of actions with an associated cost. Based
on this cost, we can determine the probability that the vehicle
will perform that sequence of actions in the following way.
The first step is to create a ratio of the cost for performing a
given sequence of actions to the sum of all of the costs for
performing n sequences of actions:

ratioi =

n∑

j=1

costj

costi
,∀ i ∈ [1, n]

We then normalize the ratio of each sequence of actions by
dividing it by the sum of all of the ratios, as shown in Equation
(4):

probai =
ratioi

n∑

j=1

ratioj

, ∀ i ∈ [1, n] (4)

Equation (4) computes the normalized probability of a given
sequence of actions occurring as compared to all sequences of
actions that are possible at that time.

VI. INTEGRATION OF THE LONG-TERM AND SHORT-TERM
PREDICTIONS

One key component of the PRIDE framework is the ability
to integrate the predictions from the two algorithms described
in Sections IV and V. With this integration, we are able to
increase or decrease the confidence of the results of each
of these prediction algorithms based upon how well the
predictions align. The methodology used to integrate the long-
term prediction estimates with those provided by the short-
term prediction algorithm is detailed in [15].

A. Significance of Critical Time Points

We define critical time points as those that lie between time
periods when both ST and LT provide useful estimates. This
is important as it provides opportunities for leveraging the
predictions when both prediction algorithms provide valuable
estimates during these times. To facilitate discussion, we define
tbp as the break-off point beyond which the ST estimates are
of little value.

When an exteroceptive sensor observation becomes avail-
able, the innovation and the innovation covariance (which is
a 2× 2 matrix as we are considering xv and yv), are checked
to determine if the EKF updates are to be performed with
that observation. The following two conditions are checked to
determine if the observation falls within 2σ (95 %) bounds:

∣∣∣∣∣

(
ν(1)√
S(1, 1)

)∣∣∣∣∣ < 2.0 and

∣∣∣∣∣

(
ν(2)√
S(2, 2)

)∣∣∣∣∣ < 2.0

If the above conditions are not satisfied, the ST estimates
will no longer be bounded (the covariances of the position
estimates grow without bounds) and accordingly their consis-
tency cannot be guaranteed. The time instant at which this
occurs is termed the break-off point, tbp.

B. Experimental Results

The integration of the predictions from the two algorithms
has been performed in different ways through important ef-
forts.

In 2005, work was performed to apply the integration
methodology on a straight line with obstacle avoidance [15].
The resulting prediction estimates showed that while the
ST predictions provide accurate position estimates within a
shorter time horizon, the quality of the predictions degrade
considerably as the time horizons get longer. Conversely, the
LT prediction algorithms specifically address this shortcoming
by providing realistic estimates at longer time horizons that are
amenable for autonomous on-road driving. The probabilistic
scaling methodology was used to integrate the two prediction
algorithms more tightly, such that the results of the ST
prediction can help to validate those of the LT prediction and
vice-versa.

In 2006, a new way to apply the integration methodology
was implemented [10]. To analyze the performance of the
prediction algorithms and to determine the window in which
both the ST and LT algorithms provide reasonable results, we
let the vehicle traverse the track until the first break-off point
occurs. As mentioned earlier, the break-point occurs when
the ST estimates are no longer consistent. The integration
methodology is used on the ST and LT estimates belonging to
the time period [0 − tbp] by varying the speed of the vehicle
and the time of prediction.

During the same year, in our last effort using the integration
methodology, we have tested the performance of the ST
and the LT prediction algorithms with several data sets of
varying data rates, speeds and prediction intervals on a closed-
track [8]. The results have consistently demonstrated that ST
estimates are superior to LT estimates in the time period
[t0 − 0.25tbp] and the LT estimates are to be preferred in
the time period immediately after tbp until 2tbp especially
when no external corrections are available for ST prediction.
Subsequently, [0.25tbp − tbp] is the most desired time period
for the integration of the ST and LT estimates. We compare
the results of the integration methodology performed in the
two mentioned time periods along a closed-track. We use the
last LT estimates from the previous integration to find the next
break-off point, and we repeat the same process until the last
break-off point of the track.

VII. DRIVER AGGRESSIVITY

The addition of aggressivities is the latest enhancement to
the PRIDE framework. The term aggressivity in this context
refers to the following description [18]:
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A driving behaviour is aggressive if it is deliberate,
likely to increase the risk of collision and is moti-
vated by impatience, annoyance, hostility and/or an
attempt to save time.

The aggressivity feature was developed after the integration of
the PRIDE framework with the Open Architecture Simulation
and Tools (MOAST) and the Urban Search and Rescue Sim-
ulation (USARSim) simulation environment [16]. This effort
provides predictions incorporating the physics, kinematics and
dynamics of vehicles involved in traffic scenarios.

A. Mobility Open Architecture Simulation and Tools (MOAST)

MOAST is a framework that provides a baseline infrastruc-
ture for the development, testing, and analysis of autonomous
systems that is guided by three principles: 1) Creation of a
multi-agent simulation environment and tool set that enables
developers to focus their efforts on their area of expertise,
2) Creation of a baseline control system which can be used
for the performance evaluation of the new algorithms and
subsystems, and 3) Creation of a mechanism that provides
a smooth gradient to migrate a system from a purely virtual
world to an entirely real implementation.

MOAST implements a control technique which decom-
poses the control problem into a hierarchy of controllers
with each echelon (or level) of control, adding more ca-
pabilities to the system. Module-to-module communications
in MOAST is accomplished through the Neutral Message
Language (NML) [6], based on a message buffer model.

B. Urban Search And Rescue Simulation (USARSim)

USARSim is a high-fidelity physics-based simulation sys-
tem that provides the embodiment and environment for the
development and testing of autonomous systems. This is an
open source simulation environment that is based on Epic
Games Unreal Tournament 2004. Originally developed to
study human robotic interactions in multi-agent environment
in an Urban Search And Rescue (USAR) environment [9],
USARSim is expanding its capabilities to provide realistic
simulation environments to assist in the development and
testing of cognitive systems, autonomous nautical vessels, and
autonomous road driving vehicles.

USARSim utilizes the Karma Physics engine and high-
quality 3D rendering facilities of the Unreal game engine
to create a realistic simulation environment that provides the
embodiment of a robotic system.

C. System architecture of the MOAST/USARSim and PRIDE
Frameworks

The embedded client-server architecture (Figure 3) of the
Unreal game engine enables USARSim to provide individu-
alized control over multiple robotic systems through discrete
socket interfaces. The interfaces provide a generalized repre-
sentation language that enables the user to query and control
the robots’ subsystems. All the communications between the
clients (Unreal client and the Controller) and the server are
performed through the network. The Unreal Server includes

Fig. 3. System architecture of USARSim, MOAST and PRIDE.

the Unreal Engine, Gamebots to bridge the Unreal Engine with
outside applications, the maps and the models (robot models,
victims, etc). MOAST first connects to the Unreal Server, then
it sends commands to USARSim to spawn a robot. At this
step, MOAST listens to the sensor data and sends commands
to control the robot.

As depicted in Figure 3, PRIDE uses a Road Network
Database [4] to retrieve the information about road networks
for the moving object prediction process. The purpose of
the Road Network Database is to provide the data structures
necessary to capture all of the information necessary about
road networks so that a planner or control system on an
autonomous vehicle can plan routes along the roadway at
any level of abstraction. The PRIDE framework assumes
knowledge of the current position and the velocity of the
vehicles on the road to predict their future locations. The
PRIDE algorithms retrieve the status (position and velocity)
of every vehicle by querying their corresponding navigation
channel. At this step, the information from the Road Network
Database is used to compute the future positions of the moving
objects. The data commands are sent to MOAST through the
Primitive level.

D. Modeling Aggressivity within PRIDE

Unlike other approaches that use an underlying static cost
model for activities such as path planning, this approach
introduces the concept of a dynamic cost model, where the
costs are vehicle specific and are a function of what is
perceived in the environment. As explained in section V, we
associate underlying costs to various actions and states. We
then sum the costs that are associated with a specific driving
maneuver and use that overall cost to determine the probability
that a vehicle will perform that maneuver; the higher the cost
to perform the maneuver, the lower the probability that it
will occur. However, different drivers have different driving
behaviors, and thus have different underlying costs model. One
driver may be very conservative, only changing lanes when
absolutely necessary, never exceeding the speed limit, etc. On
the other hand, another driver may drive very aggressively,
weaving in and out of lanes, greatly exceeding the speed
limit, and tailgating other drivers. In most cases, one would
experience both kinds of drivers on any trip (along with many
drivers that fall somewhere in the middle), and a moving object
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prediction framework needs a mechanism to account for all
such circumstances.

When a driver is first encountered, it is extremely rare that
one can instantaneously determine the perceived aggressivity
of the driver. This information is often determined after ob-
serving the driver for a certain amount of time, characterizing
their driving behaviors, and assigning an aggressivity. The ag-
gressivity that is assigned greatly impacts PRIDE’s predictions
as to where that driver will be at times in the future. For
example, we would likely assume that a conservative driver
will remain in their lanes whenever possible and stay a safe
distance behind the vehicle in front of him. An aggressive
driver would have a higher probability of changing lanes. We
may also find that the aggressivity of the driver may change
over times. There are times when one can observe a driver for
many seconds at a time. In this case, the driver’s aggressivity
may change, perhaps they are very aggressively trying to get
to a certain lane but become more passive when they get there.

The PRIDE framework addresses all of these driver types
and all of the situations mentioned above. Experiments and
corresponding results performed on the aggressivity can be
found in [13].

VIII. CONCLUSIONS AND FUTURE WORK

The utility of algorithms of predictions has proved to
be particularly important with emphasis on complex path
planning for autonomous vehicles in dynamic environments.
This paper presented the chronology of the development
of the PRIDE framework, a hierarchical, multi-resolutional
approach for moving object prediction during autonomous on-
road driving. We discussed the different concepts used during
each step of the development of PRIDE. We described the
different prediction algorithms, how they can be used to predict
the future location of moving objects. We then showed the
features within PRIDE and how they individually make the
strength of each algorithm. We also detailed how the short-
term and long-term algorithms can be unified to provide better
predictions and we gave an overview of different efforts using
the integration methodology. We provided an overview of
the successive simulation packages used to accomplish more
complex traffic situations and used to implement the set of
features that constitute this framework today.
Although substantial progress has been made in designing and
implementing the PRIDE framework, there is still much to
be done. In order to have more complicated traffic situations,
we plan on using multiple vehicles in more complex road
networks, even though PRIDE is not limited algorithmically
to deal with multiple vehicles. In future papers we will tape a
real traffic scenario and compare the results to those provided
by PRIDE, in this way we can analyze how well PRIDE
predicts the future location of the vehicles. PRIDE aims to
integrate fuzzy logic for traffic negotiation at intersections and
for identification of object of interests. We also plan to upload
a release of PRIDE on sourceforge once a stable version is
available.
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